Communication

Coherence transfer between spy nuclei and nitrogen-14 in solids

Simone Cavadini a,*, Anuji Abraham a, Geoffrey Bodenhausen a,b,c

a Laboratoire de Résonance Magnétique Biomoléculaire, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, Bat dochim, CH-1015 Lausanne, Switzerland
b Département de Chimie, associé au CNRS, Ecole Normale Supérieure, 24 rue Lhomond 75231, Paris Cedex 05, France
c Department of Chemistry, University of California at Berkeley, CA, USA

Received 29 June 2007; revised 12 October 2007
Available online 18 October 2007

Abstract

Coherence transfer from ‘spy nuclei’ such as 1H or 13C (S = 1/2) was used to excite single- or double-quantum coherences of 14N nuclei (I = 1) while the S spins were aligned along the static field, in the manner of heteronuclear single-quantum correlation (HSQC) spectroscopy. For samples spinning at the magic angle, coherence transfer can be achieved through a combination of scalar couplings J(I,S) and second-order quadrupole–dipole cross-terms, also known as residual dipolar splittings (RDS). The second-order quadrupolar powder patterns in the two-dimensional spectra allow one to determine the quadrupolar parameters of 14N in amino acids.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Solid-state NMR; Magic angle spinning (MAS); Nitrogen-14 NMR; Quadrupolar parameters; HSQC; HMQC; Amino acids

Efficient detection of 14N nuclei (99.6% natural abundance) is of interest since nitrogen is involved in the architecture of many materials, including biomolecules such as proteins and nucleic acids. Information about the quadrupolar coupling constant C_Q and asymmetry parameter g_Q, which may help to determine the molecular structure and characterize local dynamics, can be extracted from the second-order quadrupolar 14N powder patterns in single- and double-quantum spectra in samples spinning at the magic angle. Because of the large quadrupole coupling constants [1–4], 14N NMR was regarded as a difficult challenge until recently, but the advent of indirect detection via spy nuclei with S = 1/2 such as 13C or 1H made 14N NMR in solids relatively straightforward. The indirect observation of 14N single-quantum (SQ) or double-quantum (DQ) spectra is possible by transferring coherence to and fro between spins S and I via a combination of scalar couplings and second-order quadrupole–dipole cross-terms, also known as residual dipolar splittings (RDS), [5–10] or by recoupling the heteronuclear dipolar interactions by suitable sequences of radio-frequency (RF) pulses [11–16]. The methods proposed so far were built on the model of what has come to be known in liquid-state NMR as ‘heteronuclear multiple-quantum correlation’ (HMQC) [17–19], where heteronuclear two-spin coherences such as S_xI_x or S_xI_2_x evolve in the t_1 intervals of the two-dimensional experiments. In the present study, we have adapted the scheme known in liquids as ‘heteronuclear single-quantum correlation’ (HSQC) [20,21], where homonuclear 14N single-quantum (SQ) and double-quantum (DQ) coherences such as S_xI_x or S_xI_2_x that are antiphase with respect to the spy nucleus S precess in the t_1 evolution period.

Fig. 1 shows an HSQC sequence for the indirect detection of 14N SQ or DQ spectra in solids rotating at the magic angle. These experiments exploit a combination of scalar couplings J(I,S) and second-order quadrupole–dipole cross-terms or residual dipolar splittings between 1H or 13C (S) and 14N (I) nuclei for the transfer of coherence from spin S to I and back. If 13C nuclei are used as spies cross polarization (CP) from 1H to 13C can be used for the initial enhancement of 13C coherence, and heteronuclear 1H decoupling with two-pulse phase-modulation (TPPM) [22] may be applied throughout. At the end of the

* Corresponding author. Fax: +41 21 6939435.
E-mail address: Simone.Cavadini@epfl.ch (S. Cavadini).
excitation interval τ_{exc}, the density operator may comprise a superposition of antiphase terms $S_x I_z$ and S_I^2 (with $x \equiv x$ or y), bearing in mind that even under fast spinning the spectrum of the spy nucleus S coupled to $I = I_1$ features inhomogeneous powder patterns, as shown in Fig. 1 of Ref. [10]. If we start with S_x at the beginning of τ_{exc}, a mixture of $S_x I_z$ and S_I^2 may result from heteronuclear J couplings [23,24], while simulations show that only $S_x I_z$ and S_I^2 can arise if we have pure RDS between $S = 1/2$ and $I = 1$. In order to convert $(S_x I_z \cos \theta + S_I^2 \sin \theta)$ for an arbitrary phase θ, into $S_x I_z$, and $(S_x I_z \cos \theta + S_I^2 \sin \theta)$ into S_I^2, a $(\pi/2)_{Q_2}$ pulse must applied to the S spins with a phase ϕ_2 that must be orthogonal to the phase θ. This phase depends on the offset Ω^S and on the RDS which varies with the orientation of the crystallites. The phase ϕ_1 is stepped through $x, y, -x, -y$, the phase ϕ_2 is alternated between $4(\pi) + 4(-\pi)$ and the phase ϕ_3 is not changed, while the receiver phase ϕ_{rec} is stepped through $x, -y, -x, y, -x, y, x, -y$, entailing a two-fold loss of the signal-to-noise ratio compared to HMQC for the same number of scans, as verified experimentally. The signals thus obtained are largely independent of the offset Ω^S of the radio-frequency (RF) carrier. Unlike the situation that prevails in liquid-state HSQC, offsets cannot be refocused by applying $(\pi)_S \text{ and } (\pi)_I$ pulses in the middle of the τ_{exc} and τ_{rec} intervals. Magic angle spinning combined with rotor synchronization of the τ_p pulses applied to the I spins averages out the first order quadrupolar interaction. The distinction between SQ and DQ of spin I can be made as usual with two-step or four-step cycles of one of the τ_p pulses applied to the I spins [10]. The evolution period t_1 is defined as the interval between the centers of the two τ_p pulses. In principle, the insertion of a $(\pi)_S$ pulse in the middle of t_1 period should lead to line-narrowing in ω_I like in liquids, because of the refocusing of both RDS and J couplings, but in carbon-13 or proton-detected HSQC it was found that the lineshapes were not significantly affected when a $(\pi)_S$ pulse was inserted. The conversion of $(S_x I_z \cos \theta + S_I^2 \sin \theta)$ into $S_x I_z$, and of $(S_x I_z \cos \theta + S_I^2 \sin \theta)$ into S_I^2, makes the lineshape in the ω_I domain immune to both homogeneous and inhomogeneous decay of transverse S_x and S_I terms in the t_1 interval. Even if the decay of the S-spin coherences during t_1 (we observed a $^1C^\text{\text{C}}$ linewidth of 70 Hz in l-alanine and a $^1H_{\text{\text{H}}}$ linewidth of 700 Hz in glycine-d_3) is minor compared to the decay of the ^{14}N coherences (SQ linewidth 1100 Hz for l-alanine and 1600 Hz for glycine-d_3; DQ linewidth 2200 Hz for l-alanine and 3200 Hz for glycine-d_3) in HSQC the resulting second-order quadrupolar ^{14}N powder patterns appear less distorted in HSQC, allowing the extraction of more accurate quadrupolar parameters by comparison with simulations than in HMQC. This is particularly important when protons are used as spy nuclei. For dilute spins such as carbon-13, the slow dissipation of the longitudinal $S_0(C_z)$ term in the t_1 evolution period does not significantly affect either $S_x I_z$ or S_I^2. Even with proton detection in partly deuterated materials, the dissipation of the $S_0(H_z)$ operator does not appear to influence the $S_x I_z$ or S_I^2 terms.

Fig. 2 shows a comparison of ^{13}C-detected ^{14}N SQ and DQ spectra recorded with both HSQC and HMQC [10] methods under the same conditions. The signals correspond to the $^{14}N^1H^+_3$ ammonium group in l-alanine that is isotopically enriched in the $^{13}C^\text{\text{C}}$ position. Overall the SQ spectra have roughly half the width of DQ spectra.

The proton-detected HSQC and HMQC ^{14}N SQ and DQ spectra [9] of the $^{14}N^1H^+_3$ ammonium group in glycine-d_3 are shown in Fig. 3. Note that the HSQC spectra feature well-resolved singularities that are partly hidden in the HMQC spectra. These allow one to determine the quadrupolar parameters with enhanced accuracy.

The efficiency of the HSQC method can be estimated from the ratio

$$r_{\text{SQ/DQ}} = \frac{S_{\text{SQ/DQ}}(\tau_{\text{exc}}, t_1 = \tau, \tau_{\text{rec}}, \omega_2)}{S(\tau_{\text{exc}} - (\pi/2)^S - \tau - (\pi/2)^S - \tau_{\text{rec}}, \omega_2)}$$

(1)

with $\tau = 1/\nu_{\text{rot}} - \tau_{\text{rec}}^S/(\pi/2)$. This ratio, which may loosely be regarded as a quantum yield, compares the signal amplitude of the first row $S_{\text{SQ/DQ}}(\tau_{\text{exc}}, t_1 = \tau, \tau_{\text{rec}}, \omega_2)$ of the 2D spectrum (using phase-cycles appropriate for either ^{14}N SQ or DQ detection) and the signal amplitude $S(\tau_{\text{exc}} - (\pi/2)^S - \tau - (\pi/2)^S - \tau_{\text{rec}}, \omega_2)$ of a 1D spectrum obtained by Fourier transformation of an S-spin signal recorded without any ^{14}N pulses. The experimental yields of the two-way coherence transfer process in the HSQC experiment of Fig. 1 were found to be $r_{\text{SQ/DQ}} = 14$ and 10% for ^{13}C-detected SQ and DQ spectra, respectively. Similar spectra recorded under the same conditions but using the
13C-detected HMQC method for the same sample yielded \(r_{SQ/DQ} = 16 \) and 12\%, considering an appropriate reference experiment [10]. For proton-detected HSQC the efficiencies were found to be \(r_{SQ/DQ} = 5.3 \) and 1\% for SQ and DQ spectra. Under the same experimental conditions, the proton-detected 14N HMQC experiments had yields of 6 and 1\% for SQ and DQ spectra. Antonijevic and Halpern-Manners have reported similar experiments with proton detection but did not dwell on their efficiency [25]. The comparison of experiments and simulations of both SQ and DQ spectra allows one to estimate the quadrupolar parameters for L-alanine \(C_Q = 1.13 \text{ MHz} \) and \(\eta_Q = 0.28 \). For glycine-\(d_2 \) the quadrupolar parameters were \(C_Q = 1.18 \text{ MHz} \) and \(\eta_Q = 0.5 \).

Deuterated glycine-\(d_2 \) and L-alanine were purchased from Cambridge Isotope Laboratories and used without further purification. Experimental results were obtained at 9.4 T (28.9, 100.6, and 400 MHz for 14N, 13C, and 1H) with samples packed in 2.5 mm outer diameter ZrO2 rotors. The rotors were spun at 30.03 kHz in a Bruker triple-resonance CPMAS probe. With a 1 kW amplifier, the 14N pulses had an amplitude \(v_{RF} = 57 \text{ kHz} \), calibrated by direct detection of NH4NO3. In the intervals \(\tau_{exc}, \tau_1, \) and \(\tau_{rec} \) in Fig. 1, TPPM proton decoupling was used in 13C-detected experiments with \(v_{RF} = 100 \text{ kHz} \), pulse-widths of 3.7 \mu s, and a phase difference between two successive pulses of 25\°. During the 13C acquisition period \(\tau_2 \) a lower 1H RF amplitude of \(v_{RF} = 70 \text{ kHz} \) was used, with pulse-widths of 5.2 \mu s and a phase difference of 35\°. The magic angle was adjusted within 0.01\° using deuterated [D6]\(\text{z-oxalic acid dehydrate} \) [26]. The chemical shifts for 1H, 13C, and 14N were referred to the external standards of TMS, adamantane, and NH4Cl, respectively.

Conclusions. It has been shown that indirect detection of 14N spectra via spin \(S = 1/2 \) such as 1H or 13C may benefit from using a pulse sequence where the S spin magnetization is made to be longitudinal in the evolution interval \(\tau_1 \) in the manner of heteronuclear single-quantum correlation

Fig. 2. Experimental two-dimensional carbon-13-detected HSQC spectra showing the 14N single-quantum (SQ) and double-quantum (DQ) responses of the 14N\(^{+} \) ammonium group of L-alanine NH\(_{3} \)C\(^{+} \)CH\(_{3} \)COO\(^{-} \) enriched in the C\(^{+} \) position. A sample of 11 \mu l was spun in a 2.5 mm rotor at 30.03 kHz in a static field of 9.4 T (28.9 and 100.6 MHz for 14N and 13C). The fixed delays were set to a compromise \(\tau_{exc} = \tau_{rec} = 16 \text{ ms} \) while the 14N pulse lengths were \(\tau_p = 10 \) and 20 \mu s for SQ and DQ, respectively. The residual dipolar splittings may be seen in the horizontal \(\omega_2 \) dimension. The projections onto the vertical \(\omega_1 \) axes (thin curves) may be compared with simulations (thick curves) for a hypothetical uniform excitation of all crystallites (4180 orientations) and simulations (dashed curves) taking into account the full HSQC sequence. The quadrupolar parameters in the simulations were \(C_Q = 1.13 \text{ MHz} \) and \(\eta_Q = 0.28 \). For comparison, the projections of two-dimensional HMQC spectra recorded under identical conditions are shown by thin lines on the far right. (Similar spectra were shown elsewhere [10] for \(\tau_{exc} = \tau_{rec} = 19 \) and 21 ms for SQ and DQ, respectively.) The two-dimensional spectra result from averaging 32 (SQ-HSQC) and 128 (DQ-HSQC) transients for each of 256 \(\tau_1 \) increments with \(\Delta \tau_1 = 1/\tau_{rec} = 33.3 \text{ \mu s} \), and a relaxation interval of 2 s. The spectra were acquired with a carbon carrier at 45 ppm.
This allows one to obtain clean second-order ^{14}N single- and double-quantum powder patterns that are not distorted by homogeneous or inhomogeneous decay of the coherence of the ^1H or ^{13}C spy nuclei in the evolution interval, in contrast to earlier methods that were built on the principle of heteronuclear multiple-quantum correlation (HMQC), where the ^1H or ^{13}C spins participate in a coherent superposition of states with the ^{14}N spins. For carbon detection, we do not observe any significant changes in the ^{14}N lineshapes using the new HSQC scheme. On the other hand, when protons are used as spy nuclei, the HSQC scheme leads to a gain in resolution.

Acknowledgments

We are indebted to Sasa Antonijevic and Nicholas Halpem-Manners for providing a preprint of their work. We acknowledge support of the Fonds National de la Recherche Scientifique (FNRS, Switzerland), of the Commission pour la Technologie et l’Innovation (CTI, Switzerland), and of the Lawrence Berkeley National Laboratory.

References

